
Sankey-view Documentation
Release 2.1.0-dev

Rick Lupton

Feb 14, 2023





CONTENTS

1 Getting started 3
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Migrating from sankeyview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Quickstart tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Dimension tables: efficiently adding details of processes and flows . . . . . . . . . . . . . . . . . . 9
1.6 System boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Colour-intensity scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Real-world examples! 23
2.1 Examples gallery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Cookbook 27
3.1 Imports & exports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Forwards & backwards flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 “Fruit” example (from Hybrid Sankey diagrams paper) . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 US energy consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Setting the scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 API Documentation 37
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Sankey diagram definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Weaving the Sankey diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Contributing 39
5.1 Contributing to floWeaver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Citing floweaver 41

7 Indices and tables 43

Index 45

i



ii



Sankey-view Documentation, Release 2.1.0-dev

floWeaver generates Sankey diagrams from a dataset of flows. For a descriptive introduction, see the paper Hybrid
Sankey diagrams: Visual analysis of multidimensional data for understanding resource use. For a more hands-on
introduction, read on.

CONTENTS 1

https://doi.org/10.1016/j.resconrec.2017.05.002
https://doi.org/10.1016/j.resconrec.2017.05.002


Sankey-view Documentation, Release 2.1.0-dev

2 CONTENTS



CHAPTER

ONE

GETTING STARTED

Note: You can try the tutorials online without installing anything! Click here to open MyBinder.

Start by installing floWeaver:

1.1 Installation

See below for more detailed instructions for Linux, Windows and OS X. In brief: install floweaver using pip:

$ pip install floweaver

If you use Jupyter notebooks – a good way to get started – you will also want to install ipysankeywidget, an IPython
widget to interactively display Sankey diagrams:

$ pip install ipysankeywidget
$ jupyter nbextension enable --py --sys-prefix ipysankeywidget

Note: If this is the first time you have installed IPython widgets, you also need to make sure they are enabled:

$ jupyter nbextension enable --py --sys-prefix widgetsnbextension

If you use multiple virtualenvs or conda environments, make sure ipywidgets and ipysankeywidget are in-
stalled and enabled in both the environment running the notebook server and the kernel.

Note: If you apply Floweaver in restricted environments (e.g., Jupyter is hosted on university servers), use
--user instead of --sys-prefix in the above commands. Pip needs the switch too: pip install --user
floweaver ipysankeywidget.

3

https://mybinder.org/v2/gh/ricklupton/floweaver/master?filepath=docs%2Ftutorials%2Findex.ipynb
https://github.com/ricklupton/ipysankeywidget


Sankey-view Documentation, Release 2.1.0-dev

1.1.1 Install on Windows

Floweaver requries the latest version of Python to be installed. This can be done by installing the Anaconda platform
from Link here .

The procedure described in section Installation should be performed in the Anaconda Prompt, which can be found
among the installed programs.

To open Jupyter Notebook and begin to work on the Sankey. Write in the Anaconda Prompt the following

$ jupyter notebook

1.1.2 Install on macOS

Floweaver requries the latest version of Python to be installed. This can be done by installing the Anaconda platform
from Link here .

The procedure described in section Installation should be performed in the Command Line

To open Jupyter Notebook and begin to work on the Sankey. Write in the Command Line the following

$ jupyter notebook

[not sure about this :D]

1.2 Changelog

1.2.1 v2.0.0 (renamed to floWeaver)

• sankeyview is now called floWeaver!

• There is a new top-level interface to creating a Sankey diagram, the floweaver.weave() function. This
gives more flexibility about the appearance of the diagram, and lets you save the results in different formats
(other than showing directly in the Jupyter notebook), while still being simple to use for the most common
cases.

• No longer any need for from sankeyview.jupyter import show_sankey; use floweaver.
weave() instead.

• New way to specify link colours using floweaver.CategoricalScale and floweaver.
QuantitativeScale, replacing hue and related arguments to show_sankey. See Colour-intensity scales
for examples.

1.3 Migrating from sankeyview

Starting with version 2.0, sankeyview has been renamed to floWeaver. At the same time, there were a few changes to
tidy up the API and make it more flexible. This document describes the steps needed to update from an earlier version
to floWeaver.

4 Chapter 1. Getting started

https://www.anaconda.com/download/
https://www.anaconda.com/download/


Sankey-view Documentation, Release 2.1.0-dev

1.3.1 Imports

Where you had this before:

from sankeyview import *
from sankeyview.jupyter import show_sankey

You should now have one of the following:

# More explicit about where names are coming from: use e.g. "fw.Dataset"
import floweaver as fw

# Less typing: use just e.g. "Dataset"
from floweaver import *

1.3.2 show_sankey function

The show_sankey function (from module sankeyview.jupyter) aimed to provide an easy interface for show-
ing Sankey diagrams in Jupyter notebooks, but it was limited in its flexibility and had grown a long and confusing
arguments list. It has been replaced by the floweaver.weave() function.

For example, this old code:

show_sankey(sdd, dataset, width=800, height=500)

now becomes:

weave(sdd, dataset).to_widget(width=800, height=500)

For more details see floweaver.weave() and floweaver.SankeyData.

1.3.3 Link colours

While basic use should continue to work with the minor changes above, more complicated uses involving these pa-
rameters of show_sankey will need to be rewritten:

• agg_measures

• hue

See the colour scales tutorial for more details.

Then the tutorials introduce the concepts used to generate and manipulate Sankey diagrams:

1.4 Quickstart tutorial

This tutorial will go through the basic ways to use floweaver to process and transform data into many different
Sankey diagrams.

If you are reading the static documentation, you can also try an interactive version of this tutorial online
using MyBinder

Let’s start by making a really simple dataset. Imagine we have some farms, which grow apples and bananas to sell to
a few different customers. We can describe the flow of fruit from the farms (the source of the flow) to the customers
(the target of the flow):

1.4. Quickstart tutorial 5

tutorials/colour-scales.html
https://mybinder.org/v2/gh/ricklupton/floweaver/master?filepath=docs%2Ftutorials%2Fquickstart.ipynb


Sankey-view Documentation, Release 2.1.0-dev

[1]: import pandas as pd
flows = pd.read_csv('simple_fruit_sales.csv')
flows

[1]: source target type value
0 farm1 Mary apples 5
1 farm1 James apples 3
2 farm2 Fred apples 10
3 farm2 Fred bananas 10
4 farm2 Susan bananas 5
5 farm3 Susan apples 10
6 farm4 Susan bananas 1
7 farm5 Susan bananas 1
8 farm6 Susan bananas 1

Drawn directly as a Sankey diagram, this data would look something like this:

[2]: from ipysankeywidget import SankeyWidget
SankeyWidget(links=flows.to_dict('records'))

[2]: SankeyWidget(links=[{'source': 'farm1', 'target': 'Mary', 'type': 'apples', 'value':
→˓5}, {'source': 'farm1', '...

But you don’t always want a direct correspondence between the flows in your data and the links that you see in the
Sankey diagram. For example:

• Farms 4, 5 and 6 are all pretty small, and to make the diagram clearer we might want to group them in an “other”
category.

• The flows of apples are mixed in with the flows of bananas – we might want to group the kinds of fruit together
to make them easier to compare

• We might want to group farms or customers based on some other attributes – to see difference between genders,
locations, or organic/non-organic farms, say.

This introduction shows how to use floweaver to do some of these for this simple example, in the simplest possible
way. Later tutorials will show how to use it on real data, and more efficient ways to do the same things.

1.4.1 Basic diagram

Let’s start with the first example: grouping farms 4, 5 and 6 into an “other” category. floweaver works by setting
up a “Sankey diagram definition” which describes the structure of the diagram we want to see. In this case, we need
to set up some groups:

[3]: from floweaver import *

# Set the default size to fit the documentation better.
size = dict(width=570, height=300)

nodes = {
'farms': ProcessGroup(['farm1', 'farm2', 'farm3',

'farm4', 'farm5', 'farm6']),
'customers': ProcessGroup(['James', 'Mary', 'Fred', 'Susan']),

}

We need to describe roughly how these groups should be placed in the final diagram by defining an “ordering” – a list
of vertical slices, each containing a list of node ids:

6 Chapter 1. Getting started



Sankey-view Documentation, Release 2.1.0-dev

[4]: ordering = [
['farms'], # put "farms" on the left...
['customers'], # ... and "customers" on the right.

]

And we also need to say which connections should appear in the diagram (sometimes you don’t want to actually see
all the connections). This is called a “bundle” because it bundles up multiple flows – in this case all of them.

[5]: bundles = [
Bundle('farms', 'customers'),

]

Putting that together into a Sankey diagram definition (SDD) and applying it to the data gives this result:

[6]: sdd = SankeyDefinition(nodes, bundles, ordering)
weave(sdd, flows).to_widget(**size)

[6]: SankeyWidget(layout=Layout(height='300', width='570'), links=[{'source': 'farms^*',
→˓'target': 'customers^*', '...

That’s not very useful. What’s happened? Every farm and every customer has been lumped together into one group.
To get the picture we want – like the first one, but with an “other” group containing farms 4, 5 and 6 – we need to
partition the groups:

[7]: # The first argument is the dimension name -- for now we're using
# "process" to group by process ids. The second argument is a list
# of groups.
farms_with_other = Partition.Simple('process', [

'farm1', # the groups within the partition can be a single id...
'farm2',
'farm3',
('other', ['farm4', 'farm5', 'farm6']), # ... or a group

])

# This is another partition.
customers_by_name = Partition.Simple('process', [

'James', 'Mary', 'Fred', 'Susan'
])

# Update the ProcessGroup nodes to use the partitions
nodes['farms'].partition = farms_with_other
nodes['customers'].partition = customers_by_name

# New Sankey!
weave(sdd, flows).to_widget(**size)

[7]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓farm1', 'farms^farm2', '...

That’s better: now the farms are split up appropriately with an “other” category, and the customers are shown separately
as well. We don’t have to stop there – what about showing sales to men and women?

[8]: customers_by_gender = Partition.Simple('process', [
('Men', ['Fred', 'James']),
('Women', ['Susan', 'Mary']),

])

nodes['customers'].partition = customers_by_gender

(continues on next page)

1.4. Quickstart tutorial 7



Sankey-view Documentation, Release 2.1.0-dev

(continued from previous page)

weave(sdd, flows).to_widget(**size).auto_save_png('quickstart_example1.png')

[8]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓farm1', 'farms^farm2', '...

There is a better way of specifying this type of partition that doesn’t involve hard-coding who’s a man and who’s a
woman into the code – see the later tutorial on using dimension tables.

1.4.2 Distinguishing flow types

These diagrams have lost sight of the kind of fruit that is actually being sold – are the men buying apples, bananas or
both from farm1? To show this we need to split up the flows in the diagram based on their type. Just like we split up
the ProcessGroups by defining a partition of processes, we split up flows by defining a partition of flows.

(While we’re at it let’s choose some colours that look vaguely like apples and bananas)

[9]: # Another partition -- but this time the dimension is the "type"
# column of the flows table
fruits_by_type = Partition.Simple('type', ['apples', 'bananas'])

# Set the colours for the labels in the partition.
palette = {'apples': 'yellowgreen', 'bananas': 'gold'}

# New SDD with the flow_partition set
sdd = SankeyDefinition(nodes, bundles, ordering,

flow_partition=fruits_by_type)

weave(sdd, flows, palette=palette).to_widget(**size)

[9]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓farm1', 'farms^farm2', '...

As a last step, it would be nice to label which flows are apples and which are bananas. One way to do this would be
to use a legend next to the diagram, or to put labels on every flow. Here, we’ll add a new layer in the middle of the
diagram which temporarily groups together the different fruit types on their way from the farms to the customers. This
temporary/additional grouping point is called a waypoint.

To add a waypoint, we need to do three things:

1. Define it as a node

2. Position it in the ordering (between farms and customers)

3. Add it to the bundle

[10]: # 1. Define a new waypoint node
nodes['waypoint'] = Waypoint()

# 2. Update the ordering to show where the waypoint goes: in the middle
ordering = [

['farms'],
['waypoint'],
['customers'],

]

# 3. Update the bundle definition to send the flows via the waypoint

(continues on next page)

8 Chapter 1. Getting started



Sankey-view Documentation, Release 2.1.0-dev

(continued from previous page)

bundles = [
Bundle('farms', 'customers', waypoints=['waypoint']),

]

# Update the SDD with the new nodes, ordering & bundles.
sdd = SankeyDefinition(nodes, bundles, ordering,

flow_partition=fruits_by_type)

weave(sdd, flows, palette=palette).to_widget(**size)

[10]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓farm1', 'farms^farm2', '...

That’s not yet very useful. Just like above, the default for Waypoints is to group everything togeter. We need to set a
partition on the waypoint to split apart apples and bananas:

[11]: # Redefine the waypoint with a partition (same one defined above)
nodes['waypoint'] = Waypoint(fruits_by_type)

weave(sdd, flows, palette=palette).to_widget(**size)

[11]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓farm1', 'farms^farm2', '...

1.4.3 Summary

This has demonstrated the basic usage of floweaver: defining ProcessGroups, Waypoints, Partitions,
and Bundles. If you are reading the interactive version, why not go back and try out some different ways to present
the data? Here are some suggestions:

1. Farms 1, 3 and 5 are organic. Can you change the farm Partition to show two groups, organic and non-organic?

2. What happens if you remove "farm1" from the original definition of the farms ProcessGroup? (Hint:
those apples that James and Mary are eating have to come from somewhere – so they are shown as coming from
“elsewhere”. See later tutorial on moving the system boundary)

If you are reading the static documentation, you can easily experiment with editing and rerunning this tutorial online
using MyBinder, or download it to run on your computer from GitHub.

1.5 Dimension tables: efficiently adding details of processes and
flows

In the Quickstart tutorial we saw how to draw some simple Sankey diagrams and partition them in different ways, such
as this:

1.5. Dimension tables: efficiently adding details of processes and flows 9

/tutorials/system-boundary.ipynb
https://mybinder.org/v2/gh/ricklupton/floweaver/master?filepath=docs%2Ftutorials%2Fquickstart.ipynb
https://github.com/ricklupton/floweaver/archive/master.zip
./Quickstart.ipynb


Sankey-view Documentation, Release 2.1.0-dev

But to do the grouping on the right-hand side we had to explicitly list which people were “Men” and which were
“Women”, using a partition like this:

customers_by_gender = Partition.Simple('process', [
('Men', ['Fred', 'James']),
('Women', ['Susan', 'Mary']),

])

We can show this type of information more efficiently – and with less code – by using dimension tables.

1.5.1 Dimension tables

The table we’ve seen before is a flow fact table – it lists basic information about each flow:

• source: where the flow comes from

• target: where the flow goes to

• type or material: what is flowing

• value: the size (in tonnes, GJ, £ etc) of the flow

An example of this type of table is shown at the top right of this diagram:

10 Chapter 1. Getting started



Sankey-view Documentation, Release 2.1.0-dev

The dimension tables add extra information about the source/target and type of the flows (the diagram above also
shows extra information about the time period the flow relates to, but we’re not worrying about time in this tutorial).
For example, “farm2” has a location attribute set to “Cambridge”.

This tutorial will show how to use dimension tables in floweaver.

[1]: # Load the same data used in the quickstart tutorial
import pandas as pd
flows = pd.read_csv('simple_fruit_sales.csv')
flows

[1]: source target type value
0 farm1 Mary apples 5
1 farm1 James apples 3
2 farm2 Fred apples 10
3 farm2 Fred bananas 10
4 farm2 Susan bananas 5
5 farm3 Susan apples 10
6 farm4 Susan bananas 1
7 farm5 Susan bananas 1
8 farm6 Susan bananas 1

[2]: # Load another table giving extra information about the
# farms and customers. `index_col` says the first column
# can be used to lookup rows.
processes = pd.read_csv('simple_fruit_sales_processes.csv',

index_col=0)
processes

[2]: type location organic sex
id
farm1 farm Barton yes NaN
farm2 farm Barton yes NaN
farm3 farm Ely no NaN
farm4 farm Ely yes NaN
farm5 farm Duxford no NaN
farm6 farm Milton yes NaN
Mary customer Cambridge NaN Women

(continues on next page)

1.5. Dimension tables: efficiently adding details of processes and flows 11



Sankey-view Documentation, Release 2.1.0-dev

(continued from previous page)

James customer Milton NaN Men
Fred customer Cambridge NaN Women
Susan customer Cambridge NaN Men

Each id in this table matches a source or target in the flows table above. We can use this extra information to
build the Sankey.

[3]: # Setup
from floweaver import *

# Set the default size to fit the documentation better.
size = dict(width=570, height=300)

Because we now have two tables (before we only had one so didn’t have to worry) we must put them together into a
Dataset:

[4]: dataset = Dataset(flows, dim_process=processes)

Now we can use the type column in the process table to more easily pick out the relevant processes:

[5]: nodes = {
'farms': ProcessGroup('type == "farm"'),
'customers': ProcessGroup('type == "customer"'),

}

Compare this to how the same thing was written in the Quickstart:

nodes = {
'farms': ProcessGroup(['farm1', 'farm2', 'farm3',

'farm4', 'farm5', 'farm6']),
'customers': ProcessGroup(['James', 'Mary', 'Fred', 'Susan']),

}

Because we already know from the process dimension table that James, Mary, Fred and Susan are “customers”, we
don’t have to list them all by name in the ProcessGroup definition – we can write the query type == "customer"
instead.

Note: See the API Documentation for floweaver.ProcessGroup for more details.

The rest of the Sankey diagram definition is the same as before:

[6]: ordering = [
['farms'], # put "farms" on the left...
['customers'], # ... and "customers" on the right.

]
bundles = [

Bundle('farms', 'customers'),
]
sdd = SankeyDefinition(nodes, bundles, ordering)
weave(sdd, dataset).to_widget(**size)

[6]: SankeyWidget(layout=Layout(height='300', width='570'), links=[{'source': 'farms^*',
→˓'target': 'customers^*', '...

Again, we need to set the partition on the ProcessGroups to see something interesting. Here again, we can use the
process dimension table to make this easier:

12 Chapter 1. Getting started



Sankey-view Documentation, Release 2.1.0-dev

[7]: # Create a Partition which splits based on the `sex` column
# of the dimension table
customers_by_gender = Partition.Simple('process.sex',

['Men', 'Women'])

nodes['customers'].partition = customers_by_gender
weave(sdd, dataset).to_widget(**size)

[7]: SankeyWidget(groups=[{'id': 'customers', 'type': 'process', 'title': '', 'nodes': [
→˓'customers^Men', 'customers...

For reference, this is what we wrote before in the Quickstart:

customers_by_gender = Partition.Simple('process', [
('Men', ['Fred', 'James']),
('Women', ['Susan', 'Mary']),

])

And we can use other columns of the dimension table to set other partitions:

[8]: farms_by_organic = Partition.Simple('process.organic', ['yes', 'no'])

nodes['farms'].partition = farms_by_organic
weave(sdd, dataset).to_widget(**size)

[8]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓yes', 'farms^no']}, {'id...

Finally, a tip for doing quick exploration of the data with partitions: you can automatically get a Partition which
includes all the values that actually occur in your dataset using the dataset.partition method:

[9]: # This is the logical thing to write but
# it doesn't actually work at the moment :(
# nodes['farms'].partition = dataset.partition('process.organic')

# It works with 'source.organic'... we can explain later
nodes['farms'].partition = dataset.partition('source.organic')

# This should be the same as before
weave(sdd, dataset).to_widget(**size)

[9]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓yes', 'farms^no']}, {'id...

1.5.2 Summary

The process dimension table adds extra information about each process. You can use this extra information to:

1. Pick out the processes you want to include in a ProcessGroup (selection); and

2. Split apart groups of processes based on different attributes (partitions).

Things to try:

• Make a diagram showing the locations of farms on the left and the locations of customers on the right

[ ]:

1.5. Dimension tables: efficiently adding details of processes and flows 13



Sankey-view Documentation, Release 2.1.0-dev

1.6 System boundaries

Often we don’t want to show all of the data in one Sankey diagram: you focus on one part of the system. But we still
want conservation of mass (or whatever is being shown in the diagram) to work, so we end up with flows to & from
“elsewhere”. These can also be thought of as imports and exports.

Let’s start by recreating the Quickstart example:

[1]: import pandas as pd
flows = pd.read_csv('simple_fruit_sales.csv')

[2]: from floweaver import *

# Set the default size to fit the documentation better.
size = dict(width=570, height=300)

# Same partitions as the Quickstart tutorial
farms_with_other = Partition.Simple('process', [

'farm1',
'farm2',
'farm3',
('other', ['farm4', 'farm5', 'farm6']),

])

customers_by_name = Partition.Simple('process', [
'James', 'Mary', 'Fred', 'Susan'

])

# Define the nodes, this time setting the partition from the start
nodes = {

'farms': ProcessGroup(['farm1', 'farm2', 'farm3',
'farm4', 'farm5', 'farm6'],

partition=farms_with_other),
'customers': ProcessGroup(['James', 'Mary', 'Fred', 'Susan'],

partition=customers_by_name),
}

# Ordering and bundles as before
ordering = [

['farms'], # put "farms" on the left...
['customers'], # ... and "customers" on the right.

]

bundles = [
Bundle('farms', 'customers'),

]

[3]: sdd = SankeyDefinition(nodes, bundles, ordering)
weave(sdd, flows).to_widget(**size)

[3]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓farm1', 'farms^farm2', '...

What happens if we remove farm2 from the ProcessGroup?

[4]: nodes['farms'].selection = [
'farm1', 'farm3', 'farm4', 'farm5', 'farm6'

(continues on next page)

14 Chapter 1. Getting started

/tutorials/quickstart.ipynb


Sankey-view Documentation, Release 2.1.0-dev

(continued from previous page)

]
weave(sdd, flows).to_widget(**size)

[4]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓farm1', 'farms^farm3', '...

The flow is still there! But it is labelled with a little arrow to show that it is coming “from elsewhere”. This is important
because we are still showing Susan and Fred in the diagram, and they get fruit from farm2. If we didn’t show those
flows, Susan’s and Fred’s inputs and outputs would not balance.

Try now removing Susan and Fred from the diagram:

[5]: nodes['customers'].selection = ['James', 'Mary']
weave(sdd, flows).to_widget(**size)

[5]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓farm1', 'farms^farm3', '...

Now they’re gone, we no longer see the incoming flows from farm2. But we see some outgoing flows “to elsewhere”
from farm3 and the other group. This is because farm3 is within the system boundary – it is shown in the diagram
– so its output flow has to go somewhere.

1.6.1 Controlling Elsewhere flows

These flows are added automatically to make sure that mass is conserved, but because they are automatic, we have
little control over them. By explicitly adding a flow to or from Elsewhere to the diagram, we can control where they
appear and what they look like.

To do this, add a Waypoint for the outgoing flows to ‘pass through’ on their way across the system boundary:

[6]: # Define a new Waypoint
nodes['exports'] = Waypoint(title='exports here')

# Update the ordering to include the waypoint
ordering = [

['farms'], # put "farms" on the left...
['customers', 'exports'], # ... and "exports" below "customers"

] # on the right.

# Add a new bundle from "farms" to Elsewhere, via the waypoint
bundles = [

Bundle('farms', 'customers'),
Bundle('farms', Elsewhere, waypoints=['exports']),

]

sdd = SankeyDefinition(nodes, bundles, ordering)
weave(sdd, flows).to_widget(**size)

[6]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓farm1', 'farms^farm3', '...

This is pretty similar to what we had already, but now the waypoint is explicitly listed as part of the
SankeyDefinition, we have more control over it.

For example, we can put the exports above James and Mary by changing the ordering:

1.6. System boundaries 15



Sankey-view Documentation, Release 2.1.0-dev

[7]: ordering = [
['farms'],
['exports', 'customers'],

]
sdd = SankeyDefinition(nodes, bundles, ordering)
weave(sdd, flows).to_widget(**size)

[7]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓farm1', 'farms^farm3', '...

Or we can partition the exports Waypoint to show how much of it is apples and bananas:

[8]: fruits_by_type = Partition.Simple('type', ['apples', 'bananas'])
nodes['exports'].partition = fruits_by_type
weave(sdd, flows).to_widget(**size)

[8]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓farm1', 'farms^farm3', '...

1.6.2 Horizontal bands

Often, import/exports and loss flows are shown in a separate horizontal “band” either above or below the main flows.
We can do this by modifying the ordering a little bit.

The ordering style we have used so far looks like this:

ordering = [
[list of nodes in layer 1], # left-hand side
[list of nodes in layer 2],
...
[list of nodes in layer N], # right-hand side

]

But we can add another layer of nesting to make it look like this:

ordering = [
# |top band| |bottom band|
[ [........], [...........] ], # left-hand side
[ [........], [...........] ],
...
[ [........], [...........] ], # right-hand side

]

Here’s an example:

[9]: ordering = [
[[], ['farms' ]],
[['exports'], ['customers']],

]
sdd = SankeyDefinition(nodes, bundles, ordering)
weave(sdd, flows).to_widget(**size)

[9]: SankeyWidget(groups=[{'id': 'farms', 'type': 'process', 'title': '', 'nodes': ['farms^
→˓farm1', 'farms^farm3', '...

16 Chapter 1. Getting started



Sankey-view Documentation, Release 2.1.0-dev

1.6.3 Summary

• All the flows to/from a ProcessGroup are shown, even if the other end of the flow is outside the system boundary
(i.e. not part of any ProcessGroup)

• You can control the automatic flows by explicitly adding Bundles to/from Elsewhere with a Waypoint

• The ordering can contain horizontal bands

1.7 Colour-intensity scales

In this tutorial we will look at how to use colours in the Sankey diagram. We have already seen how to use a palette,
but in this tutorial we will also create a Sankey where the intensity of the colour is proportional to a numerical value.

First step is to import all the required packages and data:

[1]: import pandas as pd
import numpy as np
from floweaver import *

df1 = pd.read_csv('holiday_data.csv')

Now take a look at the dataset we are using. This is a very insightful [made-up] dataset about how different types of
people lose weight while on holiday enjoying themselves.

[2]: dataset = Dataset(df1)
df1

[2]: source target Calories Burnt Enjoyment Employment Job \
0 Activity Employment Job 2.5 35 Student
1 Activity Employment Job 4.5 20 Student
2 Activity Employment Job 8.0 5 Student
3 Activity Employment Job 1.0 5 Student
4 Activity Employment Job 8.0 30 Student
5 Activity Employment Job 1.0 35 Trainee
6 Activity Employment Job 3.0 40 Trainee
7 Activity Employment Job 2.0 40 Trainee
8 Activity Employment Job 6.0 5 Trainee
9 Activity Employment Job 12.0 45 Trainee
10 Activity Employment Job 4.5 20 Administrator
11 Activity Employment Job 9.0 10 Administrator
12 Activity Employment Job 7.5 50 Administrator
13 Activity Employment Job 1.5 35 Administrator
14 Activity Employment Job 1.5 50 Administrator
15 Activity Employment Job 11.0 55 Manager
16 Activity Employment Job 2.0 45 Manager
17 Activity Employment Job 7.5 10 Manager
18 Activity Employment Job 1.5 90 Manager
19 Activity Employment Job 2.0 40 Manager
20 Activity Employment Job 3.0 35 Pensioner
21 Activity Employment Job 9.0 15 Pensioner
22 Activity Employment Job 9.0 15 Pensioner
23 Activity Employment Job 3.0 60 Pensioner
24 Activity Employment Job 0.0 0 Pensioner

Activity
0 Reading

(continues on next page)

1.7. Colour-intensity scales 17



Sankey-view Documentation, Release 2.1.0-dev

(continued from previous page)

1 Swimming
2 Sleeping
3 Travelling
4 Working out
5 Reading
6 Travelling
7 Swimming
8 Sleeping
9 Working out
10 Swimming
11 Sleeping
12 Working out
13 Reading
14 Travelling
15 Working out
16 Reading
17 Sleeping
18 Travelling
19 Swimming
20 Reading
21 Swimming
22 Sleeping
23 Travelling
24 Working out

We now define the partitions of the data. Rather than listing the categories by hand, we use np.unique to pick out
a list of the unique values that occur in the dataset.

[3]: partition_job = Partition.Simple('Employment Job', np.unique(df1['Employment Job']))
partition_activity = Partition.Simple('Activity', np.unique(df1['Activity']))

In fact, this is pretty common so there is a built-in function to do this:

[4]: # these statements or the ones above do the same thing
partition_job = dataset.partition('Employment Job')
partition_activity = dataset.partition('Activity')

We then go on to define the structure of our sankey. We define nodes, bundles and the order. In this case its pretty
straightforward:

[5]: nodes = {
'Activity': ProcessGroup(['Activity'], partition_activity),
'Job': ProcessGroup(['Employment Job'], partition_job),

}

bundles = [
Bundle('Activity', 'Job'),

]

ordering = [
['Activity'],
['Job'],

]

Now we will plot a Sankey that shows the share of time dedicated to each activity by each type of person.

18 Chapter 1. Getting started



Sankey-view Documentation, Release 2.1.0-dev

[6]: # These are the same each time, so just write them here once
size_options = dict(width=500, height=400,

margins=dict(left=100, right=100))

sdd = SankeyDefinition(nodes, bundles, ordering)
weave(sdd, dataset, measures='Calories Burnt').to_widget(**size_options)

[6]: SankeyWidget(groups=[{'id': 'Activity', 'type': 'process', 'title': '', 'nodes': [
→˓'Activity^Reading', 'Activit...

We can start using colour by specifying that we want to partition the flows according to type of person. Notice that
this time we are using a pre-determined palette.

You can find all sorts of palettes listed here.

[7]: sdd = SankeyDefinition(nodes, bundles, ordering, flow_partition=partition_job)

weave(sdd, dataset, palette='Set2_8', measures='Calories Burnt').to_widget(**size_
→˓options)

[7]: SankeyWidget(groups=[{'id': 'Activity', 'type': 'process', 'title': '', 'nodes': [
→˓'Activity^Reading', 'Activit...

Now, if we want to make the colour of the flow to be proportional to a numerical value.

[8]: weave(sdd, dataset, link_color=QuantitativeScale('Calories Burnt'), measures=
→˓'Calories Burnt').to_widget(**size_options)

[8]: SankeyWidget(groups=[{'id': 'Activity', 'type': 'process', 'title': '', 'nodes': [
→˓'Activity^Reading', 'Activit...

It’s more interesting to use colour to show a different attribute from the flow table. But because a line in the Sankey
diagram is an aggregation of multiple flows in the original data, we need to specify how the new dimension will be
aggregated. For example, we’ll use the mean of the flows within each Sankey link to set the colour. In this case we
will use the colour to show how much each type of person emjoys each activity. We can be interested in either the
cumulative enjoyment, or the mean enjoyment: try both!

Aggregation is specified with the measures parameter, which should be set to a dictionary mapping dimension
names to aggregation functions ('mean', 'sum' etc).

[9]: weave(sdd, dataset, measures={'Calories Burnt': 'sum', 'Enjoyment': 'mean'}, link_
→˓width='Calories Burnt',

link_color=QuantitativeScale('Enjoyment')).to_widget(**size_options)

[9]: SankeyWidget(groups=[{'id': 'Activity', 'type': 'process', 'title': '', 'nodes': [
→˓'Activity^Reading', 'Activit...

[10]: weave(sdd, dataset, measures={'Calories Burnt': 'sum', 'Enjoyment': 'mean'}, link_
→˓width='Calories Burnt',

link_color=QuantitativeScale('Enjoyment', intensity='Calories Burnt')).to_
→˓widget(**size_options)

/home/docs/checkouts/readthedocs.org/user_builds/floweaver/envs/latest/lib/python3.7/
→˓site-packages/floweaver-2.1.0.dev0-py3.7.egg/floweaver/color_scales.py:128:
→˓RuntimeWarning: invalid value encountered in double_scalars
value /= measures[self.intensity]

[10]: SankeyWidget(groups=[{'id': 'Activity', 'type': 'process', 'title': '', 'nodes': [
→˓'Activity^Reading', 'Activit...

1.7. Colour-intensity scales 19

https://jiffyclub.github.io/palettable/colorbrewer/qualitative/


Sankey-view Documentation, Release 2.1.0-dev

You can change the colour palette using the palette attribute. The palette names are different from before, because
those were categorical (or qualitative) scales, and this is now a sequential scale. The palette names are listed here.

[11]: scale = QuantitativeScale('Enjoyment', palette='Blues_9')
weave(sdd, dataset,

measures={'Calories Burnt': 'sum', 'Enjoyment': 'mean'},
link_width='Calories Burnt',
link_color=scale) \

.to_widget(**size_options)

[11]: SankeyWidget(groups=[{'id': 'Activity', 'type': 'process', 'title': '', 'nodes': [
→˓'Activity^Reading', 'Activit...

[12]: scale.domain

[12]: (0.0, 90.0)

It is possible to create a colorbar / scale to show the range of intensity values, but it’s not currently as easy as it should
be. This should be improved in future.

1.7.1 More customisation

You can subclass the QuantitativeScale class to get more control over the colour scale.

[13]: class MyScale(QuantitativeScale):
def get_palette(self, link):

# Choose colour scheme based on link type (here, Employment Job)
name = 'Greens_9' if link.type == 'Student' else 'Blues_9'
return self.lookup_palette_name(name)

def get_color(self, link, value):
palette = self.get_palette(link)
return palette(0.2 + 0.8*value)

[14]: my_scale = MyScale('Enjoyment', palette='Blues_9')
weave(sdd, dataset,

measures={'Calories Burnt': 'sum', 'Enjoyment': 'mean'},
link_width='Calories Burnt',
link_color=my_scale) \

.to_widget(**size_options)

[14]: SankeyWidget(groups=[{'id': 'Activity', 'type': 'process', 'title': '', 'nodes': [
→˓'Activity^Reading', 'Activit...

Or, maybe you want to hide the smallest flows:

[15]: class DimmingScale(QuantitativeScale):
def __init__(self, attr, threshold, **kwargs):

super().__init__(attr)
self.threshold = threshold

def get_color(self, link, normalised_value):
if normalised_value < self.threshold:

return '#ddd'
return super().get_color(link, normalised_value)

20 Chapter 1. Getting started

https://jiffyclub.github.io/palettable/colorbrewer/sequential/


Sankey-view Documentation, Release 2.1.0-dev

[16]: my_scale2 = DimmingScale('Calories Burnt', threshold=0.3, palette='Blues_9')
w = weave(sdd, dataset, measures='Calories Burnt', link_color=my_scale2) \

.to_widget(**size_options)
w

[16]: SankeyWidget(groups=[{'id': 'Activity', 'type': 'process', 'title': '', 'nodes': [
→˓'Activity^Reading', 'Activit...

Just for fun, you can adjust the threshold interactively:

[17]: from ipywidgets import interact

@interact(threshold=(0.0, 1.0, 0.1))
def update_threshold(threshold=0.3):

my_scale2.threshold = threshold
w_new = weave(sdd, dataset, measures='Calories Burnt', link_color=my_scale2) \

.to_widget(**size_options)
w.links = w_new.links

interactive(children=(FloatSlider(value=0.3, description='threshold', max=1.0),
→˓Output()), _dom_classes=('widg...

This colour scale decides whether to choose a grey colour based on the normalised value (within a range of 0 to 1)
which is used to lookup a colour in the colour scale.

Alternatively, you could intervene based on the absolute value:

[18]: class DimmingScaleAbsolute(QuantitativeScale):
def __init__(self, attr, threshold, **kwargs):

super().__init__(attr)
self.threshold = threshold

def __call__(self, link, measures):
value = self.get_value(link, measures)
if value < self.threshold:

return '#ddd'
return super().__call__(link, measures)

[19]: my_scale3 = DimmingScaleAbsolute('Calories Burnt', threshold=2, palette='Blues_9')
weave(sdd, dataset, measures='Calories Burnt', link_color=my_scale3) \

.to_widget(**size_options)

[19]: SankeyWidget(groups=[{'id': 'Activity', 'type': 'process', 'title': '', 'nodes': [
→˓'Activity^Reading', 'Activit...

A similar approach can be used with a CategoricalScale as well as a QuantitativeScale:

[20]: class DimmingCategoricalScale(CategoricalScale):
def __init__(self, attr, threshold_measure, threshold_value, **kwargs):

"""Acts like CategoricalScale unless threshold_measure is below threshold_
→˓value."""

super().__init__(attr)
self.threshold_measure = threshold_measure
self.threshold_value = threshold_value

def __call__(self, link, measures):
value = measures[self.threshold_measure]
if value < self.threshold_value:

(continues on next page)

1.7. Colour-intensity scales 21



Sankey-view Documentation, Release 2.1.0-dev

(continued from previous page)

return '#ddd'
return super().__call__(link, measures)

[21]: my_scale3 = DimmingCategoricalScale(
'type',
threshold_measure='Calories Burnt',
threshold_value=6,
palette='Blues_9'

)
weave(sdd, dataset, measures='Calories Burnt', link_color=my_scale3) \

.to_widget(**size_options)

[21]: SankeyWidget(groups=[{'id': 'Activity', 'type': 'process', 'title': '', 'nodes': [
→˓'Activity^Reading', 'Activit...

22 Chapter 1. Getting started



CHAPTER

TWO

REAL-WORLD EXAMPLES!

The examples gallery has real-world examples of how floWeaver has been used.

2.1 Examples gallery

These pages show real-world examples of how floWeaver has been used.

Add yours to the list!

2.1.1 Journal article: Incremental Material Flow Analysis with Bayesian Inference

This article uses Sankey diagrams to visualise the results of an uncertain Material Flow Analysis. floWeaver was used
to structure the diagrams and calculate the colours, which indicate the level of uncertainty about each flow.

23

https://github.com/ricklupton/floweaver/issues/33
http://dx.doi.org/10.1111/jiec.12698


Sankey-view Documentation, Release 2.1.0-dev

The floWeaver code to produce this diagram is available on Github. Note that this used an older version of floWeaver,
where some details of the API for overriding flow colours were different.

• Source: R Lupton & J Allwood, Incremental Material Flow Analysis with Bayesian Inference. Journal of
Industrial Ecology (2017). DOI: 10.1111/jiec.12698.

24 Chapter 2. Real-world examples!

https://github.com/ricklupton/bayesian-mfa-paper/blob/master/2%20-%20View%20results.ipynb
http://dx.doi.org/10.1111/jiec.12698


Sankey-view Documentation, Release 2.1.0-dev

2.1.2 Visualizing flow of patients in Oncoguide using Sankey diagrams

At IKNL, we work everyday to continuously improve oncological and palliative care of the Dutch population. We
have developed Oncoguide, a tool that supports healthcare professionals and patients in making the best decisions for
their treatment. Oncoguide provides a graphical representation of clinical guidelines for patient therapy in the shape
of decision trees.

We wanted to generate a graphical representation of the flow of patients through the decision trees. Namely, we were
interested in seeing the amount of patients that were treated according to the guidelines and the amount of patients that
were not. We used floWeaver to generate Sankey diagrams like the one shown below.

This is an example of a decision tree for prostate cancer. Each node of the tree represents a decision point. Based on
his (disease) characteristics, the patient travels through the tree until he reaches a leaf, which represents a (suggested)
treatment. In green, you can see the patients that were treated according to the guideline, while in red you can see the
patients that deviated from the guideline. This isn’t necessarily bad (usually the clinician has good reasons to do so),
but it gives us a good idea of how patients are treated.

The floWeaver code to produce this diagram is available on Github. Furthermore, you can access Oncoguide here. It
is free of charge and creating an account is optional. Look for the English version on the bottom of the main screen!

2.1. Examples gallery 25

https://iknl.nl/
https://www.iknl.nl/oncologische-zorg/oncoguide/
https://github.com/ricklupton/floweaver
https://github.com/arturomoncadatorres/oncoguide_sankey
https://oncoguide.nl/


Sankey-view Documentation, Release 2.1.0-dev

26 Chapter 2. Real-world examples!



CHAPTER

THREE

COOKBOOK

Shorter examples of how to do common tasks, and the examples from the journal paper:

3.1 Imports & exports

This recipe demonstrates how to show import and export flows to/from a simple process chain.

For demonstration, the CSV data is written directly in the cell below – in practice you would want to load data a file.

[1]: import pandas as pd
from io import StringIO

flows = pd.read_csv(StringIO("""
source,target,type,value
a,b,main,3
b,c,main,4
imports,b,import/export,2
b,exports,import/export,1
"""))

flows

[1]: source target type value
0 a b main 3
1 b c main 4
2 imports b import/export 2
3 b exports import/export 1

Here is the basic structure of the Sankey diagram: a chain of processes a -- b --- c.

[2]: from floweaver import *

# Set the default size to fit the documentation better.
size = dict(width=570, height=300)

nodes = {
'a': ProcessGroup(['a']),
'b': ProcessGroup(['b']),
'c': ProcessGroup(['c']),

}

bundles = [
Bundle('a', 'b'),

(continues on next page)

27



Sankey-view Documentation, Release 2.1.0-dev

(continued from previous page)

Bundle('b', 'c'),
]

ordering = [
['a'],
['b'],
['c'],

]

sdd = SankeyDefinition(nodes, bundles, ordering)

weave(sdd, flows).to_widget(**size)

[2]: SankeyWidget(layout=Layout(height='300', width='570'), links=[{'source': '__>b^*',
→˓'target': 'b^*', 'type': '*...

To get more control over the appearance of the import/export flows, they can be controlled using Waypoints:

[3]: nodes = {
'a': ProcessGroup(['a']),
'b': ProcessGroup(['b']),
'c': ProcessGroup(['c']),
'imports': Waypoint(),
'exports': Waypoint(),

}

bundles = [
Bundle('a', 'b'),
Bundle('b', 'c'),
Bundle(Elsewhere, 'b', waypoints=['imports']),
Bundle('b', Elsewhere, waypoints=['exports']),

]

ordering = [
[['a'], ['imports']],
[['b']],
[['c'], ['exports']],

]

sdd = SankeyDefinition(nodes, bundles, ordering)

weave(sdd, flows).to_widget(**size)

[3]: SankeyWidget(layout=Layout(height='300', width='570'), links=[{'source': 'a^*',
→˓'target': 'b^*', 'type': '*', ...

To get different colours for imports/exports, we need to modify the SDD to use the type column to distinguish
different types of flow:

[4]: sdd = SankeyDefinition(nodes, bundles, ordering, flow_partition=Partition.Simple('type
→˓', ['main', 'import/export']))

weave(sdd, flows).to_widget(**size)

[4]: SankeyWidget(layout=Layout(height='300', width='570'), links=[{'source': 'a^*',
→˓'target': 'b^*', 'type': 'main...

Finally, you can customise the colour scheme:

28 Chapter 3. Cookbook



Sankey-view Documentation, Release 2.1.0-dev

[5]: weave(sdd, flows, palette={'main': 'steelblue', 'import/export': 'lightblue'}).to_
→˓widget(**size)

[5]: SankeyWidget(layout=Layout(height='300', width='570'), links=[{'source': 'a^*',
→˓'target': 'b^*', 'type': 'main...

3.1.1 Alternative style

An alternative style for showing imports & exports like this isn’t currently supported:

But it should be possible to support with minor changes to the Sankey diagram definition. For example, the difference
between this style and the style shown above could be requested by changing:

Bundle(Elsewhere, 'b', waypoints=['imports'])

to

Bundle(Elsewhere, 'b', waypoints=[])

The lack of a waypoint would indicate that the flow should be shown as a short “stub”.

3.2 Forwards & backwards flows

This recipe demonstrates how forwards and backwards flows work.

For demonstration, the CSV data is written directly in the cell below – in practice you would want to load data a file.

[1]: import pandas as pd
from io import StringIO

flows = pd.read_csv(StringIO("""
source,target,type,value
a,b,main,2
a,c,main,1

(continues on next page)

3.2. Forwards & backwards flows 29



Sankey-view Documentation, Release 2.1.0-dev

(continued from previous page)

c,d,main,3
b,c,back,2
"""))

flows

[1]: source target type value
0 a b main 2
1 a c main 1
2 c d main 3
3 b c back 2

Here is one structure, with nodes b and c both in the same vertical slice:

[2]: from floweaver import *

# Set the default size to fit the documentation better.
size = dict(width=570, height=300)

nodes = {
'a': ProcessGroup(['a']),
'b': ProcessGroup(['b']),
'c': ProcessGroup(['c']),
'd': ProcessGroup(['d']),
'back': Waypoint(direction='L'),

}

bundles = [
Bundle('a', 'b'),
Bundle('a', 'c'),
Bundle('b', 'c', waypoints=['back']),
Bundle('c', 'd'),
Bundle('c', 'b'),

]

ordering = [
[['a'], []],
[['b', 'c'], ['back']],
[['d'], []],

]

sdd = SankeyDefinition(nodes, bundles, ordering)

weave(sdd, flows).to_widget(**size)

[2]: SankeyWidget(layout=Layout(height='300', width='570'), links=[{'source': 'a^*',
→˓'target': 'b^*', 'type': '*', ...

Alternatively, if b is moved to the right, extra hidden waypoints are automatically added to get the b--c flow back to
the left of c:

[3]: bundles = [
Bundle('a', 'b'),
Bundle('a', 'c'),
Bundle('b', 'c'),
Bundle('c', 'd'),
Bundle('c', 'b'),

(continues on next page)

30 Chapter 3. Cookbook



Sankey-view Documentation, Release 2.1.0-dev

(continued from previous page)

]

ordering = [
[['a'], []],
[['c'], ['back']],
[['b', 'd'], []],

]

sdd = SankeyDefinition(nodes, bundles, ordering)

weave(sdd, flows).to_widget(**size)

[3]: SankeyWidget(groups=[{'id': '__a_b_1', 'type': 'group', 'title': '', 'nodes': ['__a_b_
→˓1^*']}, {'id': '__b_c_1'...

3.3 “Fruit” example (from Hybrid Sankey diagrams paper)

This notebook gives a fairly complicated example of building a Sankey diagram from the sample “fruit” database used
in the paper Hybrid Sankey diagrams: Visual analysis of multidimensional data for understanding resource use.

For more explanation of the steps and concepts, see the tutorials.

[1]: from floweaver import *

Load the dataset:

[2]: dataset = Dataset.from_csv('fruit_flows.csv', 'fruit_processes.csv')

This made-up dataset describes flows from farms to consumers:

[3]: dataset._flows.head()

[3]: source target material time value
0 farm1 eat1 apples 2011-08-01 2.720691
1 eat1 landfill Cambridge apples 2011-08-01 1.904484
2 eat1 composting Cambridge apples 2011-08-01 0.816207
3 farm1 eat1 apples 2011-08-02 8.802195
4 eat1 landfill Cambridge apples 2011-08-02 6.161537

Additional information is available in the process dimension table:

[4]: dataset._dim_process.head()

[4]: type location function sector
id
inputs stock * inputs NaN
farm1 process Cambridge small farm farming
farm2 process Cambridge small farm farming
farm3 process Ely small farm farming
farm4 process Ely allotment farming

We’ll also define some partitions that will be useful:

[5]: farm_ids = ['farm{}'.format(i) for i in range(1, 16)]

(continues on next page)

3.3. “Fruit” example (from Hybrid Sankey diagrams paper) 31

https://doi.org/10.1016/j.resconrec.2017.05.002


Sankey-view Documentation, Release 2.1.0-dev

(continued from previous page)

farm_partition_5 = Partition.Simple('process', [('Other farms', farm_ids[5:])] + farm_
→˓ids[:5])
partition_fruit = Partition.Simple('material', ['bananas', 'apples', 'oranges'])
partition_sector = Partition.Simple('process.sector', ['government', 'industry',
→˓'domestic'])

Now define the Sankey diagram definition.

• Process groups represent sets of processes in the underlying database. The underlying processes can be specified
as a list of ids (e.g. ['inputs']) or as a Pandas query expression (e.g. 'function == "landfill"').

• Waypoints allow extra control over the partitioning and placement of flows.

[6]: nodes = {
'inputs': ProcessGroup(['inputs'], title='Inputs'),
'compost': ProcessGroup('function == "composting stock"', title='Compost'),
'farms': ProcessGroup('function in ["allotment", "large farm", "small farm"]

→˓', farm_partition_5),
'eat': ProcessGroup('function == "consumers" and location != "London"',

→˓partition_sector,
title='consumers by sector'),

'landfill': ProcessGroup('function == "landfill" and location != "London"',
→˓title='Landfill'),

'composting': ProcessGroup('function == "composting process" and location !=
→˓"London"', title='Composting'),

'fruit': Waypoint(partition_fruit, title='fruit type'),
'w1': Waypoint(direction='L', title=''),
'w2': Waypoint(direction='L', title=''),
'export fruit': Waypoint(Partition.Simple('material', ['apples', 'bananas',

→˓'oranges'])),
'exports': Waypoint(title='Exports'),

}

The ordering defines how the process groups and waypoints are arranged in the final diagram. It is structured as a list
of vertical layers (from left to right), each containing a list of horizontal bands (from top to bottom), each containing
a list of process group and waypoint ids (from top to bottom).

[7]: ordering = [
[[], ['inputs', 'compost'], []],
[[], ['farms'], ['w2']],
[['exports'], ['fruit'], []],
[[], ['eat'], []],
[['export fruit'], ['landfill', 'composting'], ['w1']],

]

Bundles represent flows in the underlying database:

[8]: bundles = [
Bundle('inputs', 'farms'),
Bundle('compost', 'farms'),
Bundle('farms', 'eat', waypoints=['fruit']),
Bundle('farms', 'compost', waypoints=['w2']),
Bundle('eat', 'landfill'),
Bundle('eat', 'composting'),
Bundle('composting', 'compost', waypoints=['w1', 'w2']),

(continues on next page)

32 Chapter 3. Cookbook



Sankey-view Documentation, Release 2.1.0-dev

(continued from previous page)

Bundle('farms', Elsewhere, waypoints=['exports', 'export fruit']),
]

Finally, the process groups, waypoints, bundles and ordering are combined into a Sankey diagram definition (SDD).
When applied to the dataset, the result is a Sankey diagram!

[9]: sdd = SankeyDefinition(nodes, bundles, ordering,
flow_partition=dataset.partition('material'))

weave(sdd, dataset) \
.to_widget(width=570, height=550, margins=dict(left=70, right=90))

[9]: SankeyWidget(groups=[{'id': '__w2_compost_0', 'type': 'group', 'title': '', 'nodes': [
→˓'__w2_compost_0^*']}, {'...

3.4 US energy consumption

This example is based on the Sankey diagrams of US energy consumption from the Lawrence Livermore National
Laboratory (thanks to John Muth for the suggestion and transcribing the data). We jump straight to the final result –
for more explanation of the steps and concepts, see the tutorials.

[1]: from floweaver import *

Load the dataset:

[2]: dataset = Dataset.from_csv('us-energy-consumption.csv',
dim_process_filename='us-energy-consumption-processes.csv')

This defines the order the nodes appear in:

[3]: sources = ['Solar', 'Nuclear', 'Hydro', 'Wind', 'Geothermal',
'Natural_Gas', 'Coal', 'Biomass', 'Petroleum']

uses = ['Residential', 'Commercial', 'Industrial', 'Transportation']

Now define the Sankey diagram definition.

[4]: nodes = {
'sources': ProcessGroup('type == "source"', Partition.Simple('process', sources),

→˓title='Sources'),
'imports': ProcessGroup(['Net_Electricity_Import'], title='Net electricity imports

→˓'),
'electricity': ProcessGroup(['Electricity_Generation'], title='Electricity

→˓Generation'),
'uses': ProcessGroup('type == "use"', partition=Partition.Simple('process',

→˓uses)),

'energy_services': ProcessGroup(['Energy_Services'], title='Energy services'),
'rejected': ProcessGroup(['Rejected_Energy'], title='Rejected energy'),

'direct_use': Waypoint(Partition.Simple('source', [
# This is a hack to hide the labels of the partition, there should be a

→˓better way...
(' '*i, [k]) for i, k in enumerate(sources)

])),

(continues on next page)

3.4. US energy consumption 33

https://flowcharts.llnl.gov/
https://flowcharts.llnl.gov/


Sankey-view Documentation, Release 2.1.0-dev

(continued from previous page)

}

ordering = [
[[], ['sources'], []],
[['imports'], ['electricity', 'direct_use'], []],
[[], ['uses'], []],
[[], ['rejected', 'energy_services'], []]

]

bundles = [
Bundle('sources', 'electricity'),
Bundle('sources', 'uses', waypoints=['direct_use']),
Bundle('electricity', 'uses'),
Bundle('imports', 'uses'),
Bundle('uses', 'energy_services'),
Bundle('uses', 'rejected'),
Bundle('electricity', 'rejected'),

]

Define the colours to roughly imitate the original Sankey diagram:

[5]: palette = {
'Solar': 'gold',
'Nuclear': 'red',
'Hydro': 'blue',
'Wind': 'purple',
'Geothermal': 'brown',
'Natural_Gas': 'steelblue',
'Coal': 'black',
'Biomass': 'lightgreen',
'Petroleum': 'green',
'Electricity': 'orange',
'Rejected energy': 'lightgrey',
'Energy services': 'dimgrey',

}

And here’s the result!

[6]: sdd = SankeyDefinition(nodes, bundles, ordering,
flow_partition=dataset.partition('type'))

weave(sdd, dataset, palette=palette) \
.to_widget(width=700, height=450, margins=dict(left=100, right=120),

→˓debugging=True)

[6]: VBox(children=(SankeyWidget(groups=[{'id': 'sources', 'type': 'process', 'title':
→˓'Sources', 'nodes': ['source...

[ ]:

34 Chapter 3. Cookbook



Sankey-view Documentation, Release 2.1.0-dev

3.5 Setting the scale

This recipe demonstrates how the scale of the Sankey diagram is set.

By default the scale is calculated for each diagram to achieve a certain whitespace-to-flow ratio within the height that
is given. But in some cases, you may want to set the scale explicitly.

For demonstration, the CSV data is written directly in the cell below – in practice you would want to load data a file.

[1]: import pandas as pd
from io import StringIO

flows = pd.read_csv(StringIO("""
year,source,target,value
2020,A,B,10
2025,A,B,20
"""))

flows

[1]: year source target value
0 2020 A B 10
1 2025 A B 20

[2]: from floweaver import *

# Set the default size to fit the documentation better.
size = dict(width=100, height=100,

margins=dict(left=20, right=20, top=10, bottom=10))

nodes = {
'A': ProcessGroup(['A']),
'B': ProcessGroup(['B']),

}

bundles = [
Bundle('A', 'B'),

]

ordering = [['A'], ['B']]

sdd = SankeyDefinition(nodes, bundles, ordering)

If we draw the flow for the year 2020 and the year 2025 separately, they appear the same:

[3]: w1 = weave(sdd, flows.query('year == 2020')).to_widget(**size)
w1

[3]: SankeyWidget(layout=Layout(height='100', width='100'), links=[{'source': 'A^*',
→˓'target': 'B^*', 'type': '*', ...

[4]: w2 = weave(sdd, flows.query('year == 2025')).to_widget(**size)
w2

[4]: SankeyWidget(layout=Layout(height='100', width='100'), links=[{'source': 'A^*',
→˓'target': 'B^*', 'type': '*', ...

But in fact they have different scales:

3.5. Setting the scale 35



Sankey-view Documentation, Release 2.1.0-dev

[5]: w1.scale, w2.scale

[5]: (None, None)

The units of the scale are units-of-value per pixel.

If we draw the Sankeys again while setting the scale, we can see that the flow indeed has changed between years:

[6]: SCALE = 2.0

from ipywidgets import HBox

w1 = weave(sdd, flows.query('year == 2020')).to_widget(**size)
w2 = weave(sdd, flows.query('year == 2025')).to_widget(**size)

w1.scale = w2.scale = SCALE

HBox([w1, w2])

[6]: HBox(children=(SankeyWidget(layout=Layout(height='100', width='100'), links=[{'source
→˓': 'A^*', 'target': 'B^*'...

36 Chapter 3. Cookbook



CHAPTER

FOUR

API DOCUMENTATION

4.1 Datasets

class Dataset(flows, dim_process=None, dim_material=None, dim_time=None)

4.2 Sankey diagram definitions

Sankey diagram definitions (SDDs) describe the structure of the Sankey diagram you want to end up with. They are
declarative: you declare what you want up front, but the diagram isn’t created until later. This is useful if you want to
use the same diagram structure for different data sources.

class SankeyDefinition(nodes, bundles, ordering, flow_selection=None, flow_partition=None,
time_partition=None)

class ProcessGroup(selection=None, partition=None, direction='R', title=None)
A ProcessGroup represents a group of processes from the underlying dataset.

The processes to include are defined by the selection. By default they are all lumped into one node in the
diagram, but by defining a partition this can be controlled.

selection
If a list of strings, they are taken as process ids. If a single string, it is taken as a Pandas query string run
against the process table.

Type list or string

partition
Defines how to split the ProcessGroup into subgroups.

Type Partition, optional

direction
Direction of flow, default ‘R’ (left-to-right).

Type ‘R’ or ‘L’

title
Label for the ProcessGroup. If not set, the ProcessGroup id will be used.

Type string, optional

class Waypoint(partition=None, direction='R', title=None)
A Waypoint represents a control point along a Bundle of flows.

There are two reasons to define Waypoints: to control the routing of Bundle s of flows through the diagram,
and to split flows according to some attributes by setting a partition.

37



Sankey-view Documentation, Release 2.1.0-dev

partition
Defines how to split the Waypoint into subgroups.

Type Partition, optional

direction
Direction of flow, default ‘R’ (left-to-right).

Type ‘R’ or ‘L’

title
Label for the Waypoint. If not set, the Waypoint id will be used.

Type string, optional

class Bundle(source, target, waypoints=NOTHING, flow_selection=None, flow_partition=None, de-
fault_partition=None)

A Bundle represents a set of flows between two :class:`ProcessGroup`s.

source
The id of the ProcessGroup at the start of the Bundle.

Type string

target
The id of the ProcessGroup at the end of the Bundle.

Type string

waypoints
Optional list of ids of :class:`Waypoint`s the Bundle should pass through.

Type list of strings

flow_selection
Query string to filter the flows included in this Bundle.

Type string, optional

flow_partition
Defines how to split the flows in the Bundle into sub-flows. Often you want the same Partition for all the
Bundles in the diagram, see SankeyDefinition.flow_partition.

Type Partition, optional

default_partition
Defines the Partition applied to any Waypoints automatically added to route the Bundle across layers of
the diagram.

Type Partition, optional

4.3 Weaving the Sankey diagram

The weave() function actually creates a Sankey diagram from the Sankey diagram definitions and a Datasets.

weave(sankey_definition, dataset, measures='value', link_width=None, link_color=None, palette=None,
add_elsewhere_waypoints=True)

38 Chapter 4. API Documentation



CHAPTER

FIVE

CONTRIBUTING

Contributions are very welcome.

5.1 Contributing to floWeaver

Contributions are welcome! Please get in touch via email or creating a GitHub issue with any questions.

5.1.1 Documentation

These are draft guidelines for getting started contributing to the documentation on Windows. Improvements are
welcome, or get in touch if you need better instructions.

1. Required software: Anaconda, Github Desktop App.

a) Install pandoc package.

b) Clone Github Repository using the following URL: https://github.com/ricklupton/floweaver.git

2. Modify Content. The content is kept in the /docs directory. Each page is saved as a text file formatted in
reStructured Text.

3. Save Modifications. To save the changes made to the content, open the Anaconda Prompt, go to the /
floweaver/docs directory and run

make.bat html

39

https://github.com/ricklupton/floweaver/issues
https://github.com/ricklupton/floweaver.git


Sankey-view Documentation, Release 2.1.0-dev

40 Chapter 5. Contributing



CHAPTER

SIX

CITING FLOWEAVER

If floweaver has been significant in a project that leads to a publication, please acknowledge that by citing the paper
linked above:

R. C. Lupton and J. M. Allwood, ‘Hybrid Sankey diagrams: Visual analysis of multidimensional data for under-
standing resource use’, Resources, Conservation and Recycling, vol. 124, pp. 141–151, Sep. 2017. DOI:
10.1016/j.resconrec.2017.05.002

41

https://doi.org/10.1016/j.resconrec.2017.05.002
https://doi.org/10.1016/j.resconrec.2017.05.002


Sankey-view Documentation, Release 2.1.0-dev

42 Chapter 6. Citing floweaver



CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

43



Sankey-view Documentation, Release 2.1.0-dev

44 Chapter 7. Indices and tables



INDEX

B
Bundle (class in floweaver), 38

D
Dataset (class in floweaver), 37
default_partition (Bundle attribute), 38
direction (ProcessGroup attribute), 37
direction (Waypoint attribute), 38

F
flow_partition (Bundle attribute), 38
flow_selection (Bundle attribute), 38

P
partition (ProcessGroup attribute), 37
partition (Waypoint attribute), 37
ProcessGroup (class in floweaver), 37

S
SankeyDefinition (class in floweaver), 37
selection (ProcessGroup attribute), 37
source (Bundle attribute), 38

T
target (Bundle attribute), 38
title (ProcessGroup attribute), 37
title (Waypoint attribute), 38

W
Waypoint (class in floweaver), 37
waypoints (Bundle attribute), 38
weave() (in module floweaver), 38

45


	Getting started
	Installation
	Changelog
	Migrating from sankeyview
	Quickstart tutorial
	Dimension tables: efficiently adding details of processes and flows
	System boundaries
	Colour-intensity scales

	Real-world examples!
	Examples gallery

	Cookbook
	Imports & exports
	Forwards & backwards flows
	“Fruit” example (from Hybrid Sankey diagrams paper)
	US energy consumption
	Setting the scale

	API Documentation
	Datasets
	Sankey diagram definitions
	Weaving the Sankey diagram

	Contributing
	Contributing to floWeaver

	Citing floweaver
	Indices and tables
	Index

